Фазовое пространство - определение. Что такое Фазовое пространство
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Фазовое пространство - определение

Фазовый портрет
  • спирали]])
Найдено результатов: 224
ФАЗОВОЕ ПРОСТРАНСТВО         
в классической механике и статистической физике , многомерное пространство, на осях которого откладываются значения обобщенных координат и импульсов всех частиц системы; таким образом, число измерений фазового пространства равно удвоенному числу степеней свободы системы. Состояние системы изображается точкой в фазовом пространстве, а изменение состояния во времени - движением точки вдоль линии, называемой фазовой траекторией.
Фазовое пространство         

в классической механике и статистической физике, многомерное пространство всех обобщённых координат (См. Обобщённые координаты) q1 и обобщённых импульсов (См. Обобщённые импульсы) pi (i = 1, 2,..., N) механической системы с N степенями свободы. Таким образом, Ф. п. имеет размерность 2N и может быть описано с помощью ортогональной системы координат с 2N осями соответственно числу обобщённых координат и импульсов. Состояние системы изображается в Ф. п. точкой с координатами qi, pi,..., qN, pn, а изменение состояния системы во времени - движением точки вдоль линии, называемой фазовой траекторией. Для Ф. п. можно ввести понятие фазового объёма (См. Фазовый объём) и др. понятия геометрии многих измерений. Понятие Ф. п. - основное для классической статистической механики, изучающей функции распределения (См. Функция распределения) системы многих частиц. Методы Ф. п. успешно применяются также в теории нелинейных колебаний.

Фазовое пространство         
Фазовое пространство в математике и физике — пространство, каждая точка которого соответствует одному и только одному состоянию из множества всех возможных состояний системы. Точка пространства, соответствующая состоянию системы, называется «изображающей» или «представляющей» для него. Таким образом, изменению состояний системы, — то есть её динамике — можно сопоставить движение изображающей точки; траекторию этой точки называют фазовой траекторией (следует отметить, что она не тождественна действительной траектории движения), а скорость тако�
Фазовый портрет         

совокупность фазовых траекторий, характеризующая состояния и движения динамич. системы (см. Фазовой плоскости метод).

Унитарное пространство         
ЛИНЕЙНОЕ ПРОСТРАНСТВО НАД КОМПЛЕКСНЫМИ ЧИСЛАМИ СО СКАЛЯРНЫМ ПРОИЗВЕДЕНИЕМ
Эрмитово пространство; Комплексное евклидово пространство
Унитарное пространство — векторное пространство над полем комплексных чисел с положительно определённым эрмитовым скалярным произведением, комплексный аналог евклидова пространства.
Банахово пространство         
ПОЛНОЕ НОРМИРОВАННОЕ ВЕКТОРНОЕ ПРОСТРАНСТВО
Полное линейное пространство; Пространство Банаха; Банаховы пространства
Ба́нахово пространство — нормированное векторное пространство, полное по метрике, порождённой нормой. Основной объект изучения функционального анализа.
Банахово пространство         
ПОЛНОЕ НОРМИРОВАННОЕ ВЕКТОРНОЕ ПРОСТРАНСТВО
Полное линейное пространство; Пространство Банаха; Банаховы пространства
(по имени С. Банаха

полное нормированное Линейное пространство.

Двойственное пространство         
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Минковского пространство         
  • парадокса близнецов]] на диаграмме Минковского.
ЧЕТЫРЁХМЕРНОЕ ПСЕВДОЕВКЛИДОВО ПРОСТРАНСТВО СИГНАТУРЫ
Минковского пространство; Минковского пространство-время; Пространство-время Минковского; Пространственноподобный вектор; Времениподобный вектор; Нулевой четырёхвектор

четырёхмерное пространство, объединяющее физическое трёхмерное пространство и время; введено Г. Минковским (См. Минковский) в 1907-1908. Точки в М. п. соответствуют "событиям" специальной теории относительности (см. Относительности теория).

Положение события в М. п. задаётся четырьмя координатами - тремя пространственными и одной временной. Обычно используются координаты x1 = х, x2 = у, х3 = z, где х, у, z - прямоугольные декартовы координаты события в некоторой инерциальной системе отсчёта, и координата x0 = ct, где t - время события, с - скорость света. Вместо xo можно ввести мнимую временную координату x4 = ix0 = ict.

Из специальной теории относительности следует, что пространство и время не независимы: при переходе от одной инерциальной системы отсчёта (См. Инерциальная система отсчёта) к другой пространственные координаты и время преобразуются друг через друга посредством Лоренца преобразований (См. Лоренца преобразования). Введение М. п. позволяет представить преобразования Лоренца как преобразование координат события x1, x2, x3, x4 при поворотах четырёхмерной системы координат в этом пространстве.

Основной инвариант М. п. - квадрат длины четырёхмерного вектора, соединяющего две точки - события, не меняющийся при вращениях в М. п. и равный по величине (но противоположный по знаку) квадрату четырёхмерного интервала (См. Четырёхмерный интервал) (s2AB) специальной теории относительности:

(x1A - x1B)2 +2А - x2B)2 + (x3A - x3B)2 + (x4A - x4B)2 = (xA - xB)2 +А - yB)2 + (zA - zB)2 - c2(tA - tB)2 = -s2AB

(индексами А и В отмечены пространственные координаты и время событий А и В соответственно). Своеобразие геометрии М. п. определяется тем, что это выражение содержит квадраты составляющих четырёхмерного вектора на временную и пространственные оси с разными знаками (такая геометрия называется псевдоевклидовой, в отличие от евклидовой геометрии (См. Евклидова геометрия), в которой квадрат расстояния между точками определяется суммой квадратов составляющих вектора, соединяющего точки, на соответствующие оси). Вследствие этого четырёхмерный вектор с отличными от нуля составляющими может иметь нулевую длину; это имеет место для вектора, соединяющего два события, связанных световым сигналом:

(xA - xB)2 +А - уВ)2 + (zA - zB)2 = c2(tA - tB)2.

Геометрия М. п. позволяет наглядно интерпретировать кинематические эффекты специальной теории относительности (изменение длин и скорости течения времени при переходе от одной инерциальной системы отсчёта к другой и т. д.) и лежит в основе современного математического аппарата теории относительности.

Г. А. Зисман.

Пространство Минковского         
  • парадокса близнецов]] на диаграмме Минковского.
ЧЕТЫРЁХМЕРНОЕ ПСЕВДОЕВКЛИДОВО ПРОСТРАНСТВО СИГНАТУРЫ
Минковского пространство; Минковского пространство-время; Пространство-время Минковского; Пространственноподобный вектор; Времениподобный вектор; Нулевой четырёхвектор
Простра́нство Минко́вского ― четырёхмерное псевдоевклидово пространство сигнатуры (1,\;3), предложенное в качестве геометрической интерпретации пространства-времени специальной теории относительности.

Википедия

Фазовое пространство

Фазовое пространство в математике и физике — пространство, каждая точка которого соответствует одному и только одному состоянию из множества всех возможных состояний системы. Точка пространства, соответствующая состоянию системы, называется «изображающей» или «представляющей» для него. Таким образом, изменению состояний системы, — то есть её динамике — можно сопоставить движение изображающей точки; траекторию этой точки называют фазовой траекторией (она не тождественна действительной траектории движения), а скорость такой изображающей точки называют фазовой скоростью.

Концепция фазового пространства была разработана в конце XIX века Людвигом Больцманом, Анри Пуанкаре и Уиллардом Гиббсом.

Что такое ФАЗОВОЕ ПРОСТРАНСТВО - определение